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Abstract 29 

A high energy X-ray diffraction technique is employed in a new way to make operando through-30 

thickness measurements inside a large format commercial Li -ion pouch cell.  The technique, 31 

which has a sub-mm in-plane spatial resolution, simultaneously determines the local temperature, 32 

the local state of charge of both electrodes (as opposed to the global average state of charge 33 

determined electrochemically), and the local in-plane elastic strain in the current collectors, all 34 

without embedding any intrusive sensors that may alter battery behavior.  As both thermal strain 35 

and mechanical strain develop during the charge-discharge cycling of the pouch cell, a novel 36 

approach developed herein makes it possible to separate them, allowing for measurement of the 37 

local temperature inside the battery. The operando experiment reveals that the temperature inside 38 

the cell is substantially higher than the external temperature. We propose that mechanical strain 39 

is due primarily to load transfer from the electrode to the current collector during lithiation. 40 

Detailed local SOC mapping illustrates non-uniform degradation of the battery pouch cell. The 41 

possibility for 3D measurements is proposed. We believe that this new approach can provide 42 

critically needed data for validation of detailed models of processes inside commercial pouch 43 

cells.  44 
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1. Introduction  45 

Today’s electric vehicles generally use pouch cells rather than the more traditional cylindrical 46 

cells.  An important advantage of pouch cells is their much higher surface-to-volume ratio for a 47 

given capacity, which permits better cooling.  Batteries tend to heat up because of the hot 48 

environments that cars experience, internal electric resistance heating, and exothermic chemical 49 

reactions during operation.  The performance of batteries fades over time, and high temperatures 50 

(say, above 45̄  C) greatly accelerate the fade rate
1-2

 and may promote thermal runaway
3
, making 51 

temperature control critical
4-5

.  Ideally, temperature control should be guided by the temperature 52 

inside the pouch cell, but making measurements inside an operating pouch cell has been difficult.  53 

Instead, the outside temperature has usually been taken as a surrogate for the internal 54 

temperature
6-8

. 55 

If pouch cells are sufficiently thin, and if the thermal conductivity is high enough, then it is 56 

reasonable to assume that the temperature measured at an x-y location on the outside of a pouch 57 

cell, with a thermocouple or with a thermal infrared (IR) camera, is close to the temperature at 58 

that x-y location all the way through its thickness
9
.  However, auto makers are motivated to make 59 

pouch cells thicker, reducing the number of expensive seals, electrical connections, and controls.  60 

Since local temperatures inside a thick cell might well be too high under some conditions, 61 

knowledge of the spatial distribution of internal temperature is of vital importance for achieving 62 

long life at low cost. 63 

A number of techniques have been developed to measure internal cell temperatures
10-17

, but 64 

measurement of local temperatures for unaltered commercial (thick) cells can be challenging.  65 

The temperature can also be estimated using electrical-thermal models
2, 9, 18-22

, but they require 66 

accurate internal temperature data and thermal constants for validation and calibration.  In this 67 

paper we describe a novel method for making line-of-sight operando internal measurements 68 

maps that simultaneously provide local temperature, local state of charge (SOC), and local 69 

mechanical strain inside a large format Li -ion pouch cell by using high energy X-ray diffraction 70 

(HE-XRD) to monitor the lattice spacing changes in the electrodes and in the Cu current 71 

collectors.  Nominal in-plane spatial resolution is 0.3 mm, permitting observation of spatial 72 

variations or heterogeneities
8, 23-25

 of properties involved in performance and fade. This work 73 

follows our previous studies using neutron diffraction in which we made 2D time-dependent 74 

SOC maps demonstrating that failure in our pouch cell was strongly heterogeneous
24, 26-27

;  and 75 

the work of Paxton et al
28

, using X-rays, who also observed heterogeneities in cells.  The present 76 

work also clarifies the role of mechanically induced strain
29-30

, which has been ignored in some 77 

recent diffraction studies of internal temperatures carried out with both neutron and X-ray 78 

sources
31-35

. We believe that extending the technique to 3D may be possible with further 79 

development of the measurement technique
36

.  Monitoring the time evolution of these 2D and 3D 80 
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maps will allow us to determine local internal thermal conductivities
37-39

 as well as time-81 

dependent heat transfer rates from the pouch interior to the environment
40

.   82 

2. Experimental procedure 83 

A commercial 4.7 Ah pouch cell with dimensions 140 x 102 x 14 mm was used in this study. 84 

The battery materials were enclosed in a rigid aluminum casing. The cathode was 85 

Li xNiyMnzCo(1-y-z) O2 (NMC).  We note that the space group is R3_m (#166). The lattice 86 

parameters vary a bit with the exact composition, but for NMC-333 we have a = b = 2.86 87 

angstroms and c = 14.227 angstroms.  The transition metal is in 3a sites, Li is in 3b, and O is in 88 

6c.  The carbon anode was apparently amorphous, based on our inability to see a diffraction 89 

signature.  The high-energy X-ray diffraction (HE-XRD) study was carried out at the 11-ID-C 90 

beam line at the Advanced Photon Source, Argonne National Laboratory. A Si (311) single 91 

crystal monochromator was used to provide a 115 keV X-ray (λ = 0.10798 Å) with beam size of 92 

0.3 mm × 0.3 mm that is incident perpendicular to the plane of the pouch.  Since properties may 93 

vary though the pouch thickness, we refer to our measurements as line-of-sight averaged. 94 

Absorption of these high energy X-rays is low, allowing XRD measurements to be made through 95 

thick cells and minimizing any damage to the electrode materials.  96 

The experimental set up is shown in Figure 1. The plane of the battery (the x-y plane) was 97 

perpendicular to the X-ray beam. The incident beam passed through the 14-mm thick cell and 98 

was detected with a large area pixel detector placed on the 2-theta axis. Diffraction rings were 99 

recorded by the pixel detector and analyzed. An automated x-y translation stage was used to 100 

position the battery relative to the X-ray beam line for ex-situ 2D mapping of spatial 101 

variation/heterogeneity of battery properties. For the present operando measurements, the beam 102 

line passed through the center of the cell.   103 

Changes in lattice spacing (d-spacing) of crystalline electrode materials (cathode, anode, and 104 

current collectors
30

) during charging and discharging of a lithium ion battery stem from 105 

volumetric changes due to lithiation
41-43

; thermal expansion
44

; and stress/mechanical 106 

deformation
30, 45-46

, for example, if particles impinge on one another, 107 

chem therm mechd d d dD =D +D +D                                              Eq(1) 108 

where Dd is the total lattice space change, measured by the HE-XRD, of an electrode or current 109 

collector material as the cell is being charged/discharged. Since neither the aluminum nor the 110 

copper current collectors are lithiated during normal cell operation, we have
40

 111 

therm mech

ccd d dD =D +D                                                    Eq (2) 112 

The total strain, e, from the lattice spacing measurement results can be calculated as: 113 
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                                                          Eq (3) 114 

where d is the measured lattice spacing at given state of charge and temperature, and d
0
 is the 115 

lattice spacing at a reference state. 116 

In the present work, a set of experiments was devised to separate thermal and mechanical strain 117 

in the current collector by monitoring XRD spectra during charging at constant temperature in 118 

one set of experiments, and during heating at constant SOC in a second set of experiments.    119 

In the constant temperature experiments, the temperature was controlled with a pair of aluminum 120 

heat sinks clamped to the cell. Water at the desired temperatures was circulated to control the 121 

heat sink temperature, and the battery was charged at a relatively slow charging rate of 0.25C at 122 

three different temperatures: 10̄ C, 25̄ C, and 40̄C. Time resolved XRD data was taken with a 5 123 

second exposure time.  Since the thermal strain is unchanged in these constant temperature 124 

experiments, the change in the current collector lattice spacing gives the mechanical strain due to 125 

lithiation at the fixed internal temperature T 126 

 ‐
Ў

                                                       Eq (4) 127 

where dT and d
0
T are the measured lattice spacings of the current collector at the same 

128 

temperature.  (We show below that the mechanical strain is always in the elastic regime in our 
129 

study.) 
130 

For the constant SOC experiments, we heated the cell from 10C̄ to 25̄C and then from 25̄C to 131 

40̄ C, at 100% SOC, with a slow heating rate of approximately 1̄C/min to help ensure that the 132 

internal temperature was relatively uniform. The results from such experiments were used to 133 

determine the effective thermal expansion coefficients of current collectors and electrode 134 

materials, which can be used to simultaneously measure the operando local temperature, elastic 135 

strain, and local SOC inside our large format commercial pouch cell. In our experiment, the 136 

thermal expansion coefficient was determined by regression analysis, to obtain an averaged 137 

value over the temperature range of interest. 138 

   
0

0

cc cc
cc

d d

T T
a

-
=
-

                                                          Eq(5) 139 

During typical battery operation, both temperature and SOC may change. The elastic mechanical 140 

strain in the current collector, eecc, is given in the following more general form: 141 
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̀

̀ ̀

Ў
 Ὕ Ὕ                     Eq(6) 142 

T
o 

and d
0
cc are the internal temperature and lattice spacing at a reference state, for example, at 143 

25̄ C and 0% of SOC.   144 

We hypothesize that the origin of most of the mechanical strain in the current collector is load 145 

transfer from the adjacent electrode, which is strained as it lithiates
30, 42

. Other factors 146 

contributing to the mechanical strain in the current collector could include thermal expansion 147 

mismatch between current collector and electrode, internal pressure buildup during operation and 148 

aging of the battery, and external stresses from battery packaging. We note that in our 149 

experimental setup, we measure the line-of-sight average strain in the plane of the current 150 

collector, which is perpendicular to the direction of the X-ray beam. 151 

Finally, in the last set of experiments, we charged the cell at 2C and 20C without the heat sink, 152 

so that the surface of the battery was exposed to free air convection. Under such relatively fast 153 

charging rates, especially at the 20C charging rate, the internal temperature can be expected to 154 

rise. The HE-XRD exposure time was 1 s for the 2C tests and 0.2 s for the 20C tests. The 155 

(external) surface temperature of the battery was recorded with a Type-K thermocouple in the 156 

20C test. For the 20C charging rate, an infrared thermal imaging camera was also used to record 157 

the surface temperature distribution as function of charging time. The battery surface was painted 158 

black to have uniform emissivity to ease the conversion of measured infrared intensity to 159 

temperature. Results from the above constant temperature and constant SOC experiments were 160 

used to determine simultaneously the changes in temperature and mechanical strain of the battery 161 

under relatively fast operando conditions. 162 

In addition to the above operando measurements, we also conducted 2D ex-situ mapping 163 

experiments to determine local SOC fade of the battery after degradation. Figure 2 shows the 164 

locations of the local SOC measurements. A total of 1785 locations on a 51 by 35 grid were 165 

measured. The spacing between the measurement locations was 2 mm, with beam size of 0.3 mm. 166 

Diffraction data were analyzed by Rietveld refinement with the GSAS (General Structure 167 

Analysis System) software.   168 

3. Results  169 

An X-ray diffraction spectrum of the cell in the fully discharged condition is shown Figure 3a. 170 

Multiple diffraction peaks were observed. These peaks were fitted with known diffraction peaks 171 

of the battery materials. Three phases were identified, the NMC cathode, Al from the case and 172 

the positive current collector, and the Cu negative current collector. Graphite peaks were not 173 

identified in the profile, which suggests that the carbon anode material was amorphous. (The 174 



 7 

weak feature at 2ɗ ~ 1.5 degrees is thought to come from electrolyte or additives in the cell, as it 175 

did not change during cycling.) Operando X-ray diffraction profiles collected during cycling at 176 

2C are shown in Figure 3b. No new phases were observed during cycling.  177 

As shown in Figure 3b, 2ɗ for the (003) line of the NMC cathode material in a fresh cell 178 

decreases during charging, indicating an increase of lattice parameter c, in agreement with the 179 

reported lattice parameter change for NMC
47

.  Figure 4 shows the changes in lattice parameters c 180 

and a as functions of SOC (measured by coulomb counting and assuming that the SOC is 181 

uniform in this fresh cell) for charging and discharging at 2C and 5C and at 25̄C.  The relative 182 

change in lattice parameter c is about 5 times larger than that of a when the battery is charged 183 

from 0 to 100% SOC (2% vs 0.4%).  Furthermore, for lattice parameter c, but not for a, there is a 184 

relatively linear and monotonic relationship between the lattice spacing and SOC. Thus, the local 185 

lattice spacing parameter c can be used to determine the local SOC.  The charging rate has 186 

almost no influence on these curves. Peak shifts in Cu and Al were also observed. The pouch cell 187 

had an Al casing, and we could not separate signals due to the Al casing from signals due to the 188 

Al current collectors.  Therefore, we used the Cu lattice spacing changes to determine the 189 

internal temperature and mechanical stresses.  190 

Figure 5 shows that the lattice spacing change correlates with the imposed temperature change 191 

during constant SOC heating (1 C̄/min heating rate). Regression curve fitting with Eq (5) 192 

determined an effective thermal expansion coefficient for the Cu current collector of about a = 193 

22 x 10
-6

 K
-1
, in reasonable agreement with the literature value of 17x10

-6
 K

-1
.  Similarly, we 194 

estimated a for the cathode material to be 40x10
-6

 K
-1

. We note that to the extent that there is a 195 

large mismatch in thermal expansion coefficients between the current collectors and the 196 

composite electrode, there will be cyclic thermal stresses
48

 that could lead to degradation of 197 

batteries from temperature excursions, for example from binder fatigue failure
49

. 198 

Figure 6 presents the measured lattice spacing change and the total strain of the Cu current 199 

collector during constant temperature charging/discharging tests for three different temperatures, 200 

10̄ C, 25̄ C, and 40̄C. The reference temperature and SOC for total strain calculation were 25̄C 201 

and 0% (2.4V) respectively. The left axis shows the lattice spacing change of Cu (111), while the 202 

right axis shows changes of the total lattice strain calculated with Eq (3).  It is evident that both 203 

temperature and SOC, as determined from the voltage, have strong influences on the lattice 204 

spacing and total strain, which includes both temperature strain and elastic mechanical strain, in 205 

the Cu current collector. 206 

Figure 7 compares the isothermal cyclic changes in the elastic mechanical lattice strain in the Cu 207 

current collector due to battery charging/discharging, for three different constant temperature 208 

tests. The changes in elastic mechanical strain were calculated using Eq (4). We note that, since 209 

the tests are isothermal, temperature-induced mechanical strain from thermal expansion 210 
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mismatch is excluded. This makes it possible to examine the influence of SOC on the elastic 211 

mechanical strain only.  We note that the modulus of copper is about 50 times greater than the 212 

modulus of PVDF.   213 

As shown in the figure, the elastic strains at all three temperatures generally increase as a 214 

function of SOC, but the effects of temperature are weak, to within the strain measurement 215 

uncertainties (on the order of 10
-5

).  Therefore, we will assume, as a first order of approximation, 216 

that the correlation between the isothermal elastic mechanical strain and SOC is independent of 217 

temperature in our study. This can simplify the analysis of temperature and mechanical strains 218 

under more general battery operating conditions where both temperature and SOC changes 219 

during charging and discharging. We also see a modest and reversible change in strain in the 220 

current collector as we charge and discharge the cell. We note here that the measured strains are 221 

all small enough to be well within the elastic regime (i.e., below about 2 x 10
-3

). It is likely that 222 

the presence of the soft separator substantially reduces any load transfer from the positive 223 

electrode to the Cu current collector. Therefore, we assign the mechanical lattice strain in the 224 

current collector primarily to elastic load transfer from the carbon/PVDF electrode as it lithiates 225 

and delithiates.  226 

Figure  shows the evolution of the total lattice strain of the Cu current collector as a function of 227 

time during a 2C charge and discharge.  During charge, both thermal and mechanical strains are 228 

positive, and we measure a combined strain of about 2.5 x 10
-4
.  During discharge, the thermal 229 

strain is again positive (the cell continues to get hotter), but the mechanical strain is negative as 230 

the negative electrode delithiates.  Since we observe that the strain falls during discharge, 231 

mechanical strain dominates.  We note, however, that even though the mechanical strain is 232 

completely reversed at the end of the full cycle, Figure 7, the total lattice strain ends up positive, 233 

at about 8 x 10
-5

.  We assign this “residual” strain to a temperature rise of e/a  ≈ 3.5̄  C.  234 

In order to test this logic, we repeat the experiment at 20C, as shown in Figure 9a.  Again, during 235 

charge, both thermal and mechanical strains are positive, leading to the combined strain of 3.9 x 236 

10
-4

 shown in Figure 9b.   During discharge, the thermal strain is again positive but the 237 

mechanical strain is negative.  However, at 20C, where the temperature rise is greater than it was 238 

at 2C, the thermal and the mechanical strain are comparable, so the total strain is approximately 239 

constant during discharge.  Since the mechanical strain has been reversed at discharge, the 240 

residual thermal strain is 3.9 x 10
-4

, corresponding to a temperature rise at the end of the cycle of 241 

around 18̄ C.   242 

Further analysis may possible for the 20C case, where we also have the external cell temperature 243 

(from a thermocouple) during charge and discharge, Figure 9a.  As expected, the external 244 

temperature change is smaller than the 18̄ C internal temperature rise.  Approximately 45% of 245 

the external temperature rise occurs during charge and about 55% during discharge.  (Less 246 
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electrical energy is available during discharge than was used during charge.)  Assuming that the 247 

internal temperature rise is proportional to the external temperature rise
17

, then the internal 248 

temperature rise at the end of the charging step was about 8 ̄C, corresponding to a thermal strain 249 

of 1.8 x 10
-4

.  Since the total strain at the end of charge was 3.9 x 10
-4

, we estimate a mechanical 250 

strain during charge of 2.1 x 10
-4

.  More speculatively, if the temperature rise during 2C charge is 251 

again 45% of the ultimate temperature rise, we obtain, following the same logic, a thermal strain 252 

at the end of a 2C charge of 0.4 x 10
-4

, implying a mechanical strain during charge of 2.1 x 10
-4

.  253 

Such close agreement between the estimated mechanical strains at 2C and 20C is fortuitous.  A 254 

combination of additional measurements and detailed modeling will be required to test these 255 

approximate calculations, but if the mechanical strain is generally insensitive to charging rate, 256 

separating strain and temperature will be much easier. 257 

4. Discussion 258 

a. Mechanical Stresses 259 

Most electrode active materials change their volume upon lithiation
43, 50

, and this can lead to 260 

stress buildup in pouch cells
29-30

.  We hypothesize that the mechanical stresses that we 261 

observed in the Cu current collector were due primarily to load transfer from the expanding 262 

carbon electrode as it lithiated and, potentially, to thermal expansion mismatch in the 20C 263 

experiment.  Graphite particles, expand by around 10% upon lithiation
51
, but that doesn’t tell 264 

us how much a porous composite electrode expands
42

. Without some knowledge of the 265 

properties of the carbon, its microstructure, and the binder in our pouch cell, we cannot 266 

confirm this hypothesis
52-54

. 267 

 268 

We suggest using mechanical strain in the current collectors to make semi-quantitative 269 

operando estimates for the evolution of local electrode-current collector adhesion.  In pouch 270 

cells compressive forces holding electrodes together can be low, so a debonded electrode 271 

might well be in poor electrical contact with the current collector, reducing capacity
29

.  We 272 

should be able to identify when and where this important failure mechanism occurs
55-56

.  We 273 

have previously demonstrated heterogeneity in debonding in a graphite electrode using a 274 

simple ex-situ optical method, as seen in Figure 1 of reference 26
26

.  We propose that an 275 

underlying cause of delamination can be the large chemical and thermal expansion 276 

mismatch
48

 between the current collectors and the electrode material.   277 

 278 

b. 2D Maps of heterogeneous SOC 279 

In traditional macro-homogeneous battery models
57

, battery electrodes and particles are 280 

analyzed as 1D, homogeneous, and isotropic.  While these models do an excellent job in 281 

accounting for battery performance, we have argued that such models do not in general 282 

capture detailed failure mechanisms
24, 27, 58-63

.  The reason is that, like all materials, battery 283 

failure initiates at weak points and heterogeneities, which by definition don’t exist in macro-284 

homogeneous models.  Thus, any detailed failure analysis can benefit from spatial maps, in 285 
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2D or—ideally—in 3D
43, 62, 64

, that provide the location, properties, and intensity of these 286 

weak points.  For example, we believe that cell-to-cell variability of these heterogeneities 287 

can explain why the durability of nominally identical commercial cells is so variable
65-67

.  288 

 289 

Figure 8 shows a surface temperature distribution measured by an infrared camera when the 290 

cell was exposed to air and was charged to 5% SOC at a 20C charging rate. The external 291 

temperature at the center of the battery is about 1̄ C higher than at the edge. (It is worth 292 

pointing out that, to the extent that the surface has a higher in-plane thermal diffusivity than 293 

the interior, the internal temperature heterogeneity may be greater than what is observed 294 

here.)  In order to interpret and predict such non-uniformities, future work will focus on 295 

obtaining local internal heat transport/thermal conductivity constants as functions of the 296 

SOC. For example, a thermally isolated cell could be discharged rapidly to a given local 297 

SOC creating initial internal temperature gradients.  By monitoring local relaxation in the 298 

2D temperature map with time, as the cell rests, it will be possible to derive local internal in-299 

plane heat transport/thermal conductivity constants at that SOC. And by averaging the 300 

temperature over the entire cell as a function of time after a rapid charge/discharge, we can 301 

measure local heat transfer coefficients to the environment.  Measurements of these 302 

constants could enable more quantitative validations of 3D cell models
1, 4-5, 40, 58

 303 

 304 

Using the relationship between SOC and the c lattice parameter of NMC (Figure 4), we 305 

generated an ex-situ 2D SOC map (Figure 9) at the 1785 positions shown in Figure 2 for a 306 

battery that had lost 40% of its initial capacity, after about 3,200 high rate cycles at high 307 

temperature. While the degradation of the battery in this study is relatively uniform 308 

compared to other commercial batteries studied before
26-27, 68

, it nevertheless exhibits more 309 

severe degradation around the edge than the center, an apparently common pattern. Charged 310 

to 4.0V, the center region of the battery had an SOC of approximately 40%, whereas the left 311 

and right edges of the battery were charged to only about 36 to 37%.  312 

 313 

c. Line-of-Sight Averaging 314 

We have previously used diffraction measurements to provide 2D maps of the SOC of an 315 

LMO pouch cell using the spallation neutron source at ORNL
26-27

.  While those 316 

measurements were also line-of-sight averages, there was no reason to expect that the SOC 317 

should vary systematically along the line of sight—that is, from one electrode sheet to the 318 

next.  The binding strength of the electrodes to their current collectors may also not vary 319 

systematically along the line of sight.  However, we do expect a systematic increase in 320 

temperature as we go toward the central electrode pair in the pouch.  We can estimate the 321 

temperature on the pouch centerline if we can guess the functional form for the temperature 322 

profile through the cell.  In principle, this analysis, performed at every (x,y) location, could 323 

provide a full 3D temperature map. In the future, we will directly measure the line-of-sight 324 

average temperature profile through the thickness of the cell by having the X-ray beam 325 
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incident on the edge of the cell instead of on its face. The technique of Paxton et al.
28

 can 326 

also be used to provide information in the third dimension.  The use of 3D thermal models 327 

will be required to interpret much of this data. 328 

 329 

d. Failure Mechanisms 330 

 331 

In addition to indicating where degradation has taken place, our technique can also shed 332 

light on local degradation mechanisms, especially in cases where diffraction patterns from 333 

both electrodes and both current collectors are available, as in our previous work
27

.  This 334 

might be accomplished by comparing SOC swings in the electrodes.  For example, 335 

degradation in the graphite electrode would be indicated if we see LiC6 while the cathode is 336 

still substantially lithiated.  Similarly, degradation in the cathode could be indicated if it is 337 

delithiated even while the graphite electrode is at LiC12.  In cases where active Li loss (to 338 

SEI or other parasitic reactions) has occurred, we might see a reduction in the SOC extremes 339 

for both electrodes. 340 

 341 

5. Conclusions 342 

In this paper we describe how we used HE-XRD from the Advanced Photon Source at Argonne 343 

to make simultaneous operando line-of-sight non-contact measurements of local SOC, local 344 

temperature, and local mechanical strain of the current collectors inside a commercial (14mm 345 

thick) pouch cell.  The temperature rise is measured from the expansion of the Cu current 346 

collector after removal of mechanically-induced strain.  We also suggest how the peak centerline 347 

temperature might be estimated.  We believe that the mechanical strain in the current collector is 348 

due largely to load transfer from the negative electrode as it lithiates and delithiates.  Several 349 

local degradation mechanisms—loss of active Li, loss of active anode or cathode material, and 350 

debonding of an electrode from its current collector
55-56
—can be identified. 351 

Although all of the operando data described here comes from a single location in the pouch (the 352 

center), we are extending our approach to make 2D SOC-dependent operando maps of the 353 

temperature, strain, and SOC in fresh and degraded cells.  Such maps can be used to measure 354 

local thermal conductivity and heat transfer coefficients within the cell and to the environment as 355 

a function of SOC.  The spatial resolution of maps such as that shown in Figure 9 is limited only 356 

by the beam diameter (0.3 mm here), by the amount of time available to take the data and to 357 

carry out the analysis, and by what makes physical sense.  We note that for this work each point 358 

was interrogated for only on the order of 1 second, so greatly improved signal-to-noise ratios are 359 

feasible with longer averaging times.        360 

 361 

 362 

 363 
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 570 

 571 
Figure 1 Operando synchrotron experimental setup, with insert showing the battery before sandwitched 572 
between two aluminum blocks for temperature control.  573 
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 574 
Figure 2 Locations of 2D Mapping of local SOC of the commercial battery. The coordinates of the four 575 
corners of mapping are shown in mm. 576 
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 578 

Figure 3 (a) X-ray diffraction (XRD) profile of the battery at fully discharged condition (2.4V) (b) The 579 
contour plot of the XRD profiles as a function of time during 2C cycling. The voltage and current are 580 
plotted in the side panel to the left of the diffraction data. 581 

  582 
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 583 
Figure 4 (a) correlation between the lattice spacing in c-direction [003] of cathode and SOC; (b) 584 
between the lattice spacing in a-direction and SOC.  Charge and discharge at 2C, discharge at 5C. 585 

  586 
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 587 

  588 
Figure 5 Cu lattice parameter vs. time when the battery was heated from 25C̄ to 40̄C (SOC = 100%) 589 

  590 
Figure 6 Results of the constant temperature charging/discharging test. Lattice spacing of Cu-(111) and 591 
total lattice strain as function of voltage. References for total strain calculation were 20C and 0% SOC. 592 

 593 
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 594 
Figure 7 Isothermal elastic strain changes as function of SOC in 10C, 25C and 40C constant temperature 595 
tests. The reference state for strain calculation is 2.4V..  596 
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Figure 9  607 
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 611 
Figure 8 Surface temperature distribution measured by Infrared camera at 5% SOC at 20C charging rate 612 
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 614 
Figure 9 2D mapping of local SOC in a degraded battery with 60% overall remaining capacity, charged 615 
to 4.0V. The location of SOC mapping is illustrated with actual battery in background. 616 
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